Attribute level inconsistency

/* Client 1 - Deposit */
UPDATE CheckingAccount
SET Balance = Balance+100 WHERE
AccountNumber=123456;
/* Client 2 - Deposit */
UPDATE CheckingAccount
SET Balance = Balance+150 WHERE
AccountNumber=123456;

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 1

Relation level inconsistency

/* Client 1 - Give High Cost Area increases to
top performers */

UPDATE Employees

SET Hours = Hours * 1.25

WHERE Rating>90;

/* Client 2 - Tri-State hourly rate Increases for
full-time workers */

UPDATE Paychecks

SET Rate = Rate * 1.05
WHERE (State=NY OR State=CT OR State=NJ) AND

Empid IN
(SELECT Empid FROM Employees
WHERE Hours>=40);

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Multiple statement inconsistency

/* Client 1 - promote students based on
hours earned */
INSERT INTO Seniors
(SELECT *
FROM Juniors WHERE Hours > 90);
DELETE FROM Juniors WHERE Hours > 90;

/* Client 2 - Calculate class sizes */
SELECT COUNT(*) FROM SENIORS;
SELECT COUNT(*) FROM JUNIORS;

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 3

Transactions

BEGIN TRANSACTION;

-- get input from something or
someone

Do some SQL commands using that
input;

—— Confirm the results with
something or someone

IF (OK?) THEN Commit; ELSE Undo;

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 4

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Transaction Properties

Atomicity
« All operations of a transaction must be completed
e If not, the transaction is aborted

Consistency
« Permanence of database’s consistent state

Isolation

 Data used during transaction cannot be used by second transaction until the
first is completed

Durability
- Ensures that once transactions are committed, they cannot be undone or lost

Serializability
e Ensures that the schedule for the concurrent execution of several transactions
should yield consistent results

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

TRANSACTION Demo

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 7

A TRANSACTION LOG

TRL. TRX_ PREV NEXT OPERATION TABLE ROWID ATTRIBUTE BEFORE AFTER
ID NUM PTR PTR VALUE VALUE
341 101 Null 352 START *%xxStart

Transaction
352 101 341 363 UPDATE PRODUCT 1558-QW1 | PROD_QOH 25 23
363 101 352 365 UPDATE CUSTOMER | 10011 CUST_ 525.75 615.73

BALANCE

365 101 363 Null COMMIT SR Endiof

Transaction

TRL_ID =Transaction log record ID
TRX_NUM = Transaction number

PTR = Pointer to a transaction log record ID
(Note: The transaction number is automatically assigned by the DBMS.)

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

TWO CONCURRENT TRANSACTIONS TO UPDATE QOH

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100
T2:Sell 30 units PROD_QOH = PROD_QOH - 30

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

SERIAL EXECUTION OF TWO TRANSACTIONS

TIME TRANSACTION STEP STORED VALUE
1 T Read PROD_QOH 35

2 T PROD_QOH =35 + 100

3 T Write PROD_QOH 135

4 T2 Read PROD_QOH 135

5 T2 PROD_QOH =135 - 30

6 T2 Write PROD_QOH 105

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

LOST UPDATES

TIME

TRANSACTION

STEP

STORED VALUE

1 T Read PROD_QOH 35
2 T2 Read PROD_QOH 35
3 T1 PROD_QOH =35+ 100

4 T2 PROD_QOH =35 -30

5 T1 Write PROD_QOH (lost update) 135
6 T2 Write PROD_QOH 5

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

TRANSACTIONS CREATING AN UNCOMMITTED DATA PROBLEM

TRANSACTION COMPUTATION
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)
T2: Sell 30 units PROD_QOH = PROD_QOH - 30

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

CORRECT EXECUTION OF TWO TRANSACTIONS

TRANSACTION

STEP

STORED VALUE

1 T1 Read PROD_QOH 35
2 T1 PROD_QOH =35+ 100

3 T Write PROD_QOH 135
4 T1 **¥A¥ROLLBACK **x*x 35
5 T2 Read PROD_QOH 35
6 T2 PROD_QOH =35 - 30

7 T2 Write PROD_QOH 5

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

AN UNCOMMITTED DATA PROBLEM

TIME TRANSACTION STEP STORED VALUE
1 T Read PROD_QOH 35

2 T PROD_QOH =35+ 100

3 T Write PROD_QOH 135

4 T2 Read PROD_QOH (Read uncommitted data) 135

5 T2 PROD_QOH =135-30

6 T1 R ROIIBAGKE= == 35

7 T2 Write PROD_QOH 105

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

RETRIEVAL DURING UPDATE

TRANSACTIONT1 TRANSACTION T2

SELECT SUM(PROD_QOH) FROM PRODUCT UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 10
WHERE PROD_CODE = 1546-QQ2

UPDATE PRODUCT
SET PROD_QOH = PROD_QOH - 10
WHERE PROD_CODE = 1558-QW1

COMMIT;

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

TRANSACTION RESULTS: DATA ENTRY CORRECTION

BEFORE AFTER

PROD_CODE PROD_QOH PROD_QOH

11QER/31 8 8
13-Q2/P2 32 32
1546-QQ2 15 (15+10) = 25
1558-QW1 23 (23-10) = 13
2232-QTY 8 8
2232-QWE 6 6
Total 92 92

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

INCONSISTENT RETRIEVALS

TIME TRANSACTION ACTION VALUE TOTAL

1 T1 Read PROD_QOH for PROD_CODE ="11QER/31' 8 8

2 T1 Read PROD_QOH for PROD_CODE = "13-Q2/P2' 32 40

3 T2 Read PROD_QOH for PROD_CODE = '1546-QQ2' 15

4 T2 PROD_QOH=15+10

5 T2 Write PROD_QOH for PROD_CODE ='1546-QQ2' 25

6 T1 Read PROD_QOH for PROD_CODE = '1546-QQ2"' 25 (After) 65
7 T1 Read PROD_QOH for PROD_CODE ="'1558-QW1' 23 (Before) 88
8 T2 Read PROD_QOH for PROD_CODE ="1558-QW1' 23

9 T2 PROD_QOH=23-10

10 T2 Write PROD_QOH for PROD_CODE ="'1558-QW1' 13

11 T2 A COMM[[[pEmE

12 T1 Read PROD_QOH for PROD_CODE = '2232-QTY' 8 96

13 T1 Read PROD_QOH for PROD_CODE = '2232-QWE' 6 102

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Transactions that
read and write data in the same row

Transaction A
START TRANSACTION;

UPDATE invoices SET credit_total = credit_total + 100
WHERE invoice_id = 6;

-—- the SELECT statement in Transaction B

-- won't show the updated data

-- the UPDATE statement in Transaction B

-- will wait for transaction A to finish

COMMIT,

-—- the SELECT statement in Transaction B
-- will display the updated data
-—- the UPDATE statement in Transaction B

- will execute immediately

From Murach, 4th Ed.

18

Transactions that
read and write data in the same row

Transaction B
START TRANSACTION;

SELECT invoice id, credit total
FROM invoices WHERE invoice id = 6;

UPDATE invoices SET credit_total
+ 200 WHERE invoice id = 6;

credit_total

COMMIT;

From Murach, 4th Ed.

19

Concurrency problems that locking can prevent

= Lost updates

= Dirty reads

= Nonrepeatable reads
= Phantom reads

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 20

Isolation levels can also help

Isolation level Problems prevented

READ UNCOMMITTED None

READ COMMITTED Dirty reads,

REPEATABLE READ Dirty reads, lost updates,
nonrepeatable reads,

SERIALIZABLE Dirty reads, lost updates,
nonrepeatable reads, phantom reads

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

21

Example transaction with Repeatable Read

— MySQL default isolation level: REPEATABLE READ
START TRANSACTION;

— specify level with: “START TRANSACTION ISOLATION LEVEL xxx”

SELECT ... ;

-- do some complex calculation using the following result

SELECT COUNT (*) FROM ENROLLMENT WHERE ClassDept = "CompSci";

-- do some other stuff, then get that same result again to
—— finish the calculation, and this count had better be the
-— same as before!

SELECT COUNT (*) FROM ENROLLMENT WHERE ClassDept = "CompSci";

COMMIT; -- This ends the transaction

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

22

Setting 1solation level

SET {GLOBAL|SESSION} TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED | READ COMMITTED |
REPEATABLE READ |SERIALIZABLE}

Set the transaction isolation level to...
SERIALIZABLE for the next transaction

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

READ UNCOMMITTED for the current session

SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

READ COMMITTED for all sessions

SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED

From Murach, 4th Ed.

23

Database-Level Lock

Unlocked

Time Payroll Database
Transaction 1 (T1) Transaction 2 (T2)
(Update Table A) Table A (Update Table B)

1 Lock database request sl L | Lock database request
2 Locked s QK s— WAIT

3

4

5

OK - | o cked

6

7

8

9

Unlocked

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 24

MQS& Table-level lock

Tim e Transaction 1 (T1)

1 (Update row 5)

1 Lock Table A request sl
Locked _ OK m—

Payroll Database
Table A

Transaction 2 (T2)
(Update row 30)

Lock Table A request

WAIT

Unlocked (end of transaction 1) OK msp- | ocked

© &0 N O G s W N

Unlocked
(end of transaction 2)

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 25

Time Transaction 1 (T1)

NSO G s WN -

A Page level lock

Payroll Database

Transaction 2 (T2)

(Update row 1) (Update rows 5 and 2)

Lock page 1 request sl
Locked <@ OK

Lock page 2 request

OK === Locked

Lock page 1 request
WAIT

[
OK === | ocked

Unlock pages 1 and 2
(end of transaction)

Unlock page 1
(end of transaction)

Row number

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 26

.

1
2
3
4
5
6

A row-level lock

Payroll Database

Time Transaction 1 (T1) Transaction 2 (T2)
(Update row 1) Tabl (Update row 2)
Lock row 1 request sl

Lock row 2 request

Locked mmm QK s
OK msssp- | ocked

!

Unlock row 2
(end of transaction)

Unlock row 1
(end of transaction)

Row number

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 27

Four transactions that show how to work
with locking reads

Transaction A

-- lock row with rep id of 2 in parent table

SELECT * FROM sales reps WHERE rep id = 2 FOR SHARE;

-- Transaction B waits for transaction A to finish
-- Transaction C returns an error immediately

-- Transaction D skips the locked row and returns
-- the other rows immediately

—-— insert row with rep id of 2 into child table
INSERT INTO sales totals
(rep _id, sales year, sales total)
VALUES (2, 2023, 138193.69);

COMMIT; -- Transaction B executes now

From Murach, 4th Ed.

28

Four transactions that show how to work
with locking reads (continued)

From Murach, 4th Ed.

Transaction B
START TRANSACTION;

SELECT * FROM sales reps WHERE rep id < 5 FOR UPDATE;
COMMIT ;

Transaction C

START TRANSACTION;

SELECT * FROM sales reps WHERE rep id < 5
FOR UPDATE NOWAIT;

COMMIT,;

Transaction D
START TRANSACTION;
SELECT * FROM sales reps WHERE rep id < 5

FOR UPDATE SKIP LOCKED;
COMMIT;

29

Optional Locking Algorithm Details

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 30

Lock Types

Bl Binary lock

« Has two states, locked (1) and unlocked (0)
« If an object is locked by a transaction, no other transaction can use that
object
- If an object is unlocked, any transaction can lock the object for its use

B [xclusive lock

o Exists when access is reserved for the transaction that locked the
object to do write

B Shared lock

 Exists when concurrent transactions are granted read access on
the basis of a common lock

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

31

AN EXAMPLE OF A BINARY LOCK

TIME TRANSACTION STEP STORED VALUE
1 T1 Lock PRODUCT

2 T1 Read PROD_QOH 15
3 T1 PROD_QOH =15+ 10

4 T1 Write PROD_QOH 25
5 T1 Unlock PRODUCT

6 T2 Lock PRODUCT

7 T2 Read PROD_QOH 23
8 T2 PROD_QOH=23-10

9 T2 Write PROD_QOH 13
10 T2 Unlock PRODUCT

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Two-Phase L(Bc:klging Protocol
point

Release
lock

Release
I(lck

Acquire
lock

Acquire
lock

Time1T 2 3 i i 6 7 i
Start Operations End
Locked
Growing phase phase Shrinking phase

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 33

HOW A DEADLOCK CONDITION IS CREATED

TIME TRANSACTION REPLY LOCK STATUS
DATA X DATAY

0 Unlocked Unlocked
1 T1:LOCK(X) OK Locked Unlocked
2 T2:LOCK(Y) OK Locked Locked

3 T1:LOCK(Y) WAIT Locked Locked

4 T2:LOCK(X) WAIT Locked Locked

5 T1:LOCK(Y) WAIT Locked = Locked

6 T2:LOCK(X) WAIT Locked e Locked

7 T1:LOCK(Y) WAIT Locked cli Locked

8 T2:LOCK(X) WAIT Locked o Locked

9 T1:LOCK(Y) WAIT Locked k Locked

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 34

WAIT/DIE AND WOUND/WAIT CONCURRENCY CONTROL SCHEMES

TRANSACTION TRANSACTION WAIT/DIE SCHEME WOUND/WAIT SCHEME
REQUESTING LOCK OWNING LOCK

T1(11548789) T2(19562545) « T1 waits until T2 is completed and | + T1 preempts (rolls back) T2.
T2 releases its locks.

» T2isrescheduled using the
same time stamp.

T2 (19562545) T1(11548789) « T2dies (rolls back). « T2 waits until T1 is completed

« T2isrescheduled using the same and T1 releases its locks.

time stamp.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 35

Guidelines to avoid deadlocks

= Don’t allow transactions to remain open for very long.

= Don’t use a transaction isolation level higher than
necessary.

= Make large changes when you can be assured of
nearly exclusive access.

= Consider locking when coding your transactions.

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 36

Transaction log example

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 37

ATRANSACTION LOG FORTRANSACTION RECOVERY EXAMPLES

o1 1D . OR OPERATIO AR POW ID ATTRIB REEOR A 0 /A
341 101 Null 352 START ¥***Start Transaction
352 101 34 363 UPDATE PRODUCT 54778-2T | PROD_QOH 45 43
363 101 352 365 UPDATE CUSTOMER 10011 CUST_BALANCE | 615.73 675.62
365 101 363 Null COMMIT **%% End of Transaction
397 106 Null 405 START ¥***Start Transaction
405 106 397 415 INSERT INVOICE 1009 1009,10016, ...
415 106 405 419 INSERT LINE 1009,1 1009,1,89-WRE-Q,1, ...
419 106 415 427 UPDATE PRODUCT 89-WRE-Q | PROD_QOH 12 11
423 CHECKPOINT
427 106 419 431 UPDATE CUSTOMER 10016 CUST_BALANCE | 0.00 277.55
431 106 427 457 INSERT ACCT_TRANSACTION 10007 1007, 18-JAN-2018, ...
457 106 431 Null COMMIT **** End of Transaction
521 155 Null 525 START ****Start Transaction
525 155 521 528 UPDATE PRODUCT 2232/QWE | PROD_QOH 6 26
528 155 525 Null COMMIT **** End of Transaction
*i*i*CiR*A*S*H****

©2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 38

